ACOUSTIC EIGENFREQUENCIES IN CONCENTRIC SPHEROIDAL-SPHERICAL CAVITIES

G. C. Kokkorakis and J. A. Roumeliotis
Department of Electrical and Computer Engineering, National Technical University of Athens, Athens 15773, Greece

(Received 8 May 1996, and in final form 27 January 1997)

The acoustic eigenfrequencies $f_{n s m}$ in concentric spheroidal-spherical cavities are determined for both Dirichlet and Neumann boundary conditions. Two types of cavities are examined, one with spheroidal outer and spherical inner boundary and inversely for the other. The pressure field is expressed in terms of both spherical and spheroidal wave functions, connected with one another by well-known expansion formulas. When the solution is specialized to small values of $h=d /\left(2 R_{2}\right)$ where d is the interfocal distance of the spheroidal boundary and R_{2} the half length of its rotation axis, exact closed-form expressions are obtained for the coefficients $g_{n m m}^{(2)}$ and $g_{n s m}^{(4)}$ in the resulting relations $f_{n s m}(h)=f_{n s}(0)\left[1+g_{n s m}^{(2)} h^{2}+g_{n s m}^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right)\right]$. Numerical results are given for various values of the parameters.
(C) 1997 Academic Press Limited

1. INTRODUCTION

Calculation of eigenfunctions and eigenfrequencies in acoustic cavities is an old problem with numerous applications. The pure analytical solution of such problems is severely limited by the shape of the boundaries. For complicated geometries various numerical techniques are used, as well as shape perturbation methods like the ones described in reference [1] in particular. A special analytical shape perturbation method was used in references [2-5], in order to obtain the acoustic resonance frequencies and the corresponding wave functions in a spherical, a cylindrical and a rectangular cavity containing an eccentric inner small sphere.
In this paper the interior problem in the acoustic cavities, shown in Figures 1 and 2, is solved for both Dirichlet and Neumann boundary conditions. In Figure 1 the inner boundary is spherical with radius R_{1}, while the outer concentric one is prolate spheroidal with major semi-axis R_{2} and interfocal distance d. In Figure 2 the inner boundary is prolate spheroidal with major semi-axis R_{2} and interfocal distance d, while the outer concentric one is spherical with radius R_{1}. Both cavities are perturbations of the concentric spherical one with radii R_{1} and R_{2}. The prolate spheroidal boundaries are the only ones to be considered explicitly, but corresponding formulas for the oblate ones are obtained immediately.

Using well-known expansion formulas between spherical and spheroidal wave functions [6], one is able to obtain an infinite determinantal equation for the evaluation of the eigenfrequencies of the former cavities. In the special case of small $h=d /\left(2 R_{2}\right)$, one is led to an exact evaluation, up to the order h^{4}, for the elements of the infinite determinant and, finally, for the determinant itself. It is then possible to obtain the eigenfrequencies in the form $f_{n s m}(h)=f_{n s}(0)\left[1+g_{n s m}^{(2)} h^{2}+g_{n m m}^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right)\right]$, where the coefficients $g_{n m}^{(2)}$ and $g_{n m m}^{(4)}$ are independent of h and are given by exact closed-form expressions.

Figure 1. Geometry of the spheroidal-spherical cavity.

The main advantage of such an analytical solution lies in its general validity for all small values of h and for all modes, whereas all numerical techniques require repetition of the evaluation for each different h.
The case of the Dirichlet boundary conditions is examined in section 2, while in section 3 the case of the Neumann boundary conditions is considered. Finally, in section 4, numerical results are given accompanied with discussion and comments.

Figure 2. Geometry of the spherical-spheroidal cavity.

2. DIRICHLET BOUNDARY CONDITIONS

The cavities of Figures 1 and 2 are treated simultaneously. Let $\mu=\mu_{0}$ denote the spheroidal boundary and p the acoustic pressure field inside the cavity. This field satisfies the scalar Helmholtz equation. Its expression satisfying also the homogeneous Dirichlet boundary condition $p=0$ at the spherical boundary $r=R_{1}$ is

$$
\begin{gather*}
p=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[\mathrm{j}_{n}(k r)-\mathrm{n}_{n}(k r) \mathrm{j}_{n}\left(x_{1}\right) / \mathrm{n}_{n}\left(x_{1}\right)\right] \mathrm{P}_{n}^{m}(\cos \theta)\left[A_{n m} \cos m \varphi+B_{n m} \sin m \varphi\right] \\
x_{1}=k R_{1} \tag{1}
\end{gather*}
$$

where r, θ, φ are the spherical co-ordinates with respect to $0, \mathrm{j}_{n}$ and n_{n} are the spherical Bessel functions of the first and second kind, respectively, P_{n}^{m} is the associated Legendre function of the first kind and k is the resonant wavenumber.

In order to satisfy the remaining boundary condition $p=0$ at $\mu=\mu_{0}$ one expands the spherical wave functions into concentric spheroidal ones by using the formula [6]

$$
\begin{equation*}
\mathrm{Z}_{n}^{(\sigma)}(k r) \mathrm{P}_{n}^{m}(\cos \theta)=\frac{2}{2 n+1} \frac{(n+m)!}{(n-m)!} \sum_{l=m, m+1}^{\infty} \frac{\mathrm{i}^{l-n}}{N_{m l}} d_{n-m}^{m l} \mathrm{~S}_{m l}(c, \eta) \mathrm{R}_{m l}^{(\sigma)}(c, \xi), \quad c=k d / 2 \tag{2}
\end{equation*}
$$

in which $\xi=\cosh \mu, \eta$ are the spheroidal co-ordinates (φ is common in both systems), $\mathbf{z}_{n}^{(\sigma)}$ ($\sigma=1-4$) is the spherical Bessel function of any kind, $\mathrm{R}_{m l}^{(\sigma)}$ is the corresponding radial spheroidal function of the same kind, $\mathrm{S}_{m l}$ and $d_{n-m}^{m l}$ are the angular spheroidal function of the first kind and its expansion coefficients all defined in Appendix A, while the normalization constant $N_{m n}$ is [6]

$$
\begin{equation*}
N_{m n}=2 \sum_{r=0,1}^{\infty} \frac{\left(\mathrm{d}_{r}^{m n}\right)^{2}(r+2 m)!}{(2 r+2 m+1) r!} \tag{3}
\end{equation*}
$$

The prime over the summation symbols in equations (2) and (3) indicates that when $n-m$ is even/odd these summations start with the first/second value of their summation index and continue only with values of the same parity with it.

One substitutes from equation (2) into equation (1) satisfying the boundary condition $p=0$ at $\mu=\mu_{0}\left(\xi=\xi_{0}\right)$ and uses next the orthogonal properties of the angular spheroidal and the trigonometric functions, to obtain finally the following infinite set of linear homogeneous equations for the expansion coefficients $A_{n m}$ (or $B_{n m}$):

$$
\begin{equation*}
\sum_{n=m, m+1}^{\infty} \alpha_{l m m} A_{n m}=0, \quad l \geqslant m, m+1 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{l n m}=\frac{2 \mathrm{i}^{-n}(n+m)!}{(2 n+1)(n-m)!} d_{n-m}^{m l}\left[\mathbf{R}_{m l}^{(1)}\left(c, \cosh \mu_{0}\right)-\mathbf{R}_{m l}^{(2)}\left(c, \cosh \mu_{0}\right) \frac{\mathrm{j}_{n}\left(x_{1}\right)}{\mathrm{n}_{n}\left(x_{1}\right)}\right] \tag{5}
\end{equation*}
$$

In equations $(4,5) l$ and n are both even or odd, starting with that value of m or $m+1$, which has the same parity with them. So, the set (4) separates into two distinct subsets, one with l, n even and the other with l, n odd.

Setting $\xi=\cosh \mu$ and $r=l-m \pm 2 q$ in the expression (A25) of Appendis A for $\mathrm{R}_{m l}^{(\sigma)}$ and substituting there $d_{r}^{m l}(c)$ from equation (A3) of the same Appendix, one obtains

$$
\begin{gather*}
\mathbf{R}_{m l}^{(\sigma)}\left(c, \cosh \mu_{0}\right)=\frac{(l-m)!}{(l+m)!} \tanh ^{m} \mu_{0} d_{l-m}^{m l}\left\{\sum_{q=1}^{\infty} \sum_{s=0}^{\infty}(-1)^{q} a_{2 q, 2 s}^{m l+} c^{2 q+2 s} \frac{(l+m+2 q)!}{(l-m+2 q)!}\right. \\
\left.\times \mathbf{Z}_{l+2 q}^{(\sigma)}\left(x_{2}\right)+\sum_{q=0}^{q_{\max }} \sum_{s=0}^{\infty}(-1)^{q} a_{2 q, 2 s}^{m l} c^{2 q+2 s} \frac{(l+m-2 q)!}{(l-m-2 q)!} \mathrm{z}_{l-2 q}^{(\sigma)}\left(x_{2}\right)\right\}, \\
x_{2}=c \cosh \mu_{0}=k R_{2}, \tag{6}
\end{gather*}
$$

where $q_{\max }$ is the maximum integer $\leqslant(l-m) / 2$.
The summation index s is now replaced by $u=q+s$ in equation (6). By keeping in mind that

$$
\sum_{q=1}^{\infty} \sum_{u=q}^{\infty}=\sum_{u=1}^{\infty} \sum_{q=1}^{u} \quad \text { and } \quad \sum_{q=0}^{q_{\max }} \sum_{u=q}^{\infty}=\sum_{u=0}^{\infty} \sum_{q=0}^{\min \left(q_{\text {max }}, u\right)}
$$

one finally finds

$$
\begin{align*}
\mathbf{R}_{m l}^{(\sigma)}\left(c, \cosh \mu_{0}\right)= & \frac{(l-m)!}{(l+m)!} \tanh ^{m} \mu_{0} d_{l-m}^{m l}\left\{\frac{(l+m)!}{(l-m)!} \mathbf{z}_{l}^{(\sigma)}\left(x_{2}\right)+\sum_{u=1}^{\infty} c^{2 u}\left[\sum_{q=1}^{u}(-1)^{q}\right.\right. \\
& \times \frac{(l+m+2 q)!}{(l-m+2 q)!} \mathbf{z}_{l+2 q}^{(\sigma)}\left(x_{2}\right) v_{2 u-2 q}^{m l+}(2 q) a_{2 q, 0}^{m l+} \\
& \left.\left.+\sum_{q=1}^{\min \left(q_{m a x}, u\right)}(-1)^{q} \frac{(l+m-2 q)!}{(l-m-2 q)!} \mathbf{z}_{l-2 q}^{(\sigma)}\left(x_{2}\right) v_{2 u-2 q}^{m l-}(2 q) a_{2 q, 0}^{m l}\right]\right\} \tag{7}
\end{align*}
$$

In equation (7) use has been made of the relations $a_{2 q, 2 u-2 q}^{m l}=v_{2 u-2 q}^{m l} \pm(2 q) a_{2 q, 0}^{m l}, v_{0}^{m l-}(0)=1$, $a_{0,0}^{m l-}=1$ and $v_{2 u}^{m l}(0)=0$ for $u>0$, from Appendix A.

Setting each one of the two determinants $\Delta\left(\alpha_{l m n}\right)$ (one with l, n even and the other with l, n odd) of the coefficients $\alpha_{l m m}$ in equation (4) equal to 0 , one obtains two determinantal equations for the evaluation of the resonance frequencies. As far as they appear in the same general form, one can treat them simultaneously with the symbol $\Delta\left(\alpha_{l n m}\right)$. For large values of c, the equation $\Delta\left(\alpha_{l n m}\right)=0$ can be solved by numerical methods only, a procedure with many difficulties, due to the presence of the spheroidal functions. However, for small c an analytical and closed-form solution is possible. One substitutes first from equation (7) into equation (5) and next divides the elements of the l th row of the former determinant by $2\left(d_{l-m}^{m l}\right)^{2} \tanh ^{m} \mu_{0}$ and the elements of its nth column by $\mathrm{i}^{-n}(n+m)!/[(2 n+1)(n-m)!]$. So $\alpha_{l n m}$ is divided by the product of these terms, with no change in the roots of the determinantal equation. The symbol $\alpha_{l n}$ is used for the resulting coefficient, deleting the third subscript m for simplicity. As far as c depends on the unknown resonance wavenumbers $k(c=k d / 2)$, from now on one can use the parameter $h=d /\left(2 R_{2}\right)$, instead of it $\left(c=x_{2} h\right)$. So, for small h, one can set up, to the order h^{4},

$$
\begin{align*}
\alpha_{n n}=D_{n n}^{(0)}+D_{n n}^{(2)} h^{2}+D_{n n}^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right), & h=d /\left(2 R_{2}\right), \tag{8}\\
\alpha_{l n}=D_{l n}^{(l l-n \mid)} h^{|l-n|}\left[1+\mathcal{O}\left(h^{2}\right)\right], & l \neq n . \tag{9}
\end{align*}
$$

In particular, for $h=0$, it is obvious from equations $(8,9)$ that $\alpha_{l n}(0)=0$ for $l \neq n$ and $\alpha_{n n}(0)=D_{n n}^{(0)} \equiv D_{n n}^{0}$. The determinant becomes diagonal and the resonance frequencies are found from the equations $\alpha_{n n}(0)=D_{n n}^{0}=0(n=0,1,2, \ldots)$, a result independent of m and well known for two concentric spheres with radii R_{1} and R_{2}.

The relations $(8,9)$ allow a closed-form evaluation of the determinant $\Delta\left(\alpha_{l n}\right)=\Delta\left(\alpha_{l n m}\right)$, up to the order h^{4}, by the method described in detail in references [7, 8]. So, its development is

$$
\begin{gather*}
\Delta\left(\alpha_{l n}\right)=P\left(\alpha_{n n}\right)\left[1-\sum_{w=m, m+1}^{\infty} \frac{\alpha_{w+2, w} \alpha_{w, w+2}}{\alpha_{w w} \alpha_{w+2, w+2}}\right], \quad n \geqslant m, m+1, \tag{10}\\
P\left(\alpha_{n n}\right)=\alpha_{w w} \alpha_{w+2, w+2} \alpha_{w+4, w+4} \ldots, \quad w=m, m+1 \tag{11}
\end{gather*}
$$

By using equations $(8,9)$ it is obvious that, up to order h^{4},

$$
\begin{gather*}
P\left(\alpha_{n n}\right)=P\left(D_{n n}^{0}\right)\left\{1+h^{2} \sum_{w=m, m+1}^{\infty} \frac{D_{w w}^{(2)}}{D_{w w}^{0}}+h^{4} \sum_{w=m, m+1}^{\infty}\left[\frac{D_{w w}^{(4)}}{D_{w w}^{0}}+\frac{D_{w w}^{(2)}}{D_{w w}^{0}} \sum_{t=w+2}^{\infty} \frac{D_{t t}^{(2)}}{D_{t t}^{0}}\right]+\mathcal{O}\left(h^{6}\right)\right\}, \tag{12}\\
\frac{\alpha_{w+2, w} \alpha_{w, w+2}}{\alpha_{w w} \alpha_{w+2, w+2}}=\frac{D_{w+2, w}^{(2)} D_{w, w+2}^{(2)}}{D_{w w}^{0} D_{w+2, w+2}^{0}} h^{4} . \tag{13}
\end{gather*}
$$

Substituting in equation (10) from equations $(12,13)$ one obtains

$$
\begin{align*}
\Delta\left(\alpha_{l n}\right) & =P\left(D_{n n}^{0}\right)\left\{1+h^{2} \sum_{w=m, m+1}^{\infty} \frac{D_{w w}^{(2)}}{D_{w w}^{0}}+h^{4} \sum_{w=m, m+1}^{\infty}\right. \\
& \left.\times\left[\frac{D_{w w}^{(4)}}{D_{w w}^{0}}+\frac{D_{w w}^{(2)}}{D_{w w}^{0}} \sum_{t=w+2}^{\infty} \frac{D_{t}^{(2)}}{D_{t t}^{0}}-\frac{D_{w+2, w}^{(2)} D_{w, w+2}^{(2)}}{D_{w w}^{0} D_{w+2, w+2}^{0}}\right]+\mathcal{O}\left(h^{6}\right)\right\}, \quad n \geqslant m, m+1 . \tag{14}
\end{align*}
$$

Exact expressions for the various D s appearing in equation (14) are given in Appendix B.
It is evident from equation (14) that by setting $D_{n n}^{0}=\alpha_{n n}(0)=0(n \geqslant m, m+1)$ yields $\Delta\left(\alpha_{l n}\right) \neq 0$; namely, the roots of $\Delta\left[\alpha_{l n}(0)\right]=0$ are not, in general, also roots of the equation $\Delta\left[\alpha_{l n}(h)\right]=0$. Instead, this latter equation requires that

$$
\begin{equation*}
1+h^{2} \sum_{w=m, m+1}^{\infty} \frac{D_{w w}^{(2)}}{D_{w w}^{0}}+h^{4} \sum_{w=m, m+1}^{\infty}\left[\frac{D_{w w}^{(4)}}{D_{w w}^{0}}+\frac{D_{w w}^{(2)}}{D_{w w}^{0}} \sum_{t=w+2}^{\infty,} \frac{D_{t t}^{(2)}}{D_{t t}^{0}}-\frac{D_{w+2, w}^{(2)} D_{w, w+2}^{(2)}}{D_{w w}^{0} D_{w+2, w+2}^{0}}\right]=0 . \tag{15}
\end{equation*}
$$

With h small, equation (15) can be satisfied by values of the only varying parameter k that make its denominators $D_{n n}^{0}$ as small as required by the small values of h. In other words, the resonance wavenumbers $k(h)$ correspond one to one and have values near the $k(0) \equiv k^{0}$ of the concentric spherical cavity. Setting

$$
\begin{gather*}
k(h)=k^{(0)}+k^{(2)} h^{2}+k^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right), \quad k^{(0)} \equiv k^{0}, \tag{16}\\
x_{2}(h)=k(h) R_{2}=x_{2}^{(0)}+x_{2}^{(2)} h^{2}+x_{2}^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right), \quad x_{2}^{(\rho)}=k^{(\rho)} R_{2}, \quad \rho=0,2,4, \tag{17}
\end{gather*}
$$

one has

$$
\begin{aligned}
D_{n n}^{0}\left(x_{2}^{0}\right) & =0 \\
D_{n n}^{(\rho)}\left[x_{2}(h)\right] & =D_{n n}^{(\rho)}\left(x_{2}^{0}\right)+x_{2}^{(2)} \frac{\mathrm{d} D_{n n}^{(\rho)}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}} h^{2}+\left[x_{2}^{(4)} \frac{\mathrm{d} D_{n n}^{(\rho)}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}}+\frac{1}{2} \frac{\mathrm{~d}^{2} D_{n n}^{(\rho)}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}^{2}}\left(x_{2}^{(2)}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
\times h^{4}+\mathcal{O}\left(h^{6}\right), \quad x_{2}^{0} \equiv x_{2}^{(0)}, \quad \rho=0,2, \quad n \geqslant m, m+1 \tag{18}
\end{equation*}
$$

In equation (18) the relation $x_{1}=x_{2} / \tau$ has been used, where $\tau=R_{2} / R_{1}=$ constant, so x_{2} is the only variable.

By retaining only the large terms in equation (15) one finds

$$
\begin{align*}
1+h^{2}\left[\frac{D_{n n}^{(2)}}{D_{n n}^{0}}+\underset{\substack{w=m, m+1 \\
w \neq n}}{\infty} \frac{D_{w w}^{(2)}}{D_{w w}^{0}}\right] & +h^{4}\left[\frac{D_{n n}^{(4)}}{D_{n n}^{0}}+\frac{D_{n n}^{(2)}}{D_{n n}^{0}} \sum_{\substack{w=m_{m+1} \\
w \neq n}}^{\infty,} \frac{D_{w w}^{(2)}}{D_{w w}^{0}}\right. \\
& \left.-\frac{D_{n+2, n}^{(2)} D_{n, n+2}^{(2)}}{D_{n n}^{0} D_{n+2, n+2}^{0}}-\frac{D_{n, n-2}^{(2)} D_{n-2, n}^{(2)}}{D_{n-2, n-2}^{0} D_{n n}^{0}}\right]=0, \quad n \geqslant m, m+1 . \tag{19}
\end{align*}
$$

One can now multiply both members of equation (19) by $D_{n n}^{0}\left[x_{2}(h)\right] \neq 0$ and next substitute there from equation (18), setting the coefficients of h^{2} and h^{4} equal to zero. So, one finally obtains the following relations for the evaluation of $x_{2}^{(2)}$ and $x_{2}^{(4)}$:

$$
\begin{gather*}
x_{2}^{(2)}=-\left[\frac{\mathrm{d} D_{n n}^{0}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}}\right]^{-1} D_{n n}^{(2)}\left(x_{2}^{0}\right), \quad n \geqslant m, m+1, \tag{20}\\
x_{2}^{(4)}=-\left[\frac{\mathrm{d} D_{n n}^{0}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}}\right]^{-1}\left[\frac{\left(x_{2}^{(2)}\right)^{2}}{2} \frac{\mathrm{~d}^{2} D_{n n}^{0}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}^{2}}+x_{2}^{(2)} \frac{\mathrm{d} D_{n n}^{(2)}\left(x_{2}^{0}\right)}{\mathrm{d} x_{2}}+D_{n n}^{(4)}\left(x_{2}^{0}\right)\right. \\
\left.-\frac{D_{n n+2, n}^{(2)}\left(x_{2}^{0}\right) D_{n, n+2}^{(2)}\left(x_{2}^{0}\right)}{D_{n+2, n+2}^{0}\left(x_{2}^{0}\right)}-\frac{D_{n, n-2}^{(2)}\left(x_{2}^{0}\right) D_{n-2, n}^{(2)}\left(x_{2}^{0}\right)}{D_{n-2, n-2}^{0}\left(x_{2}^{0}\right)}\right], \quad n \geqslant m, m+1 . \tag{21}
\end{gather*}
$$

The two infinite sums of equation (19) do not appear in equation (21) because they have opposite values, as can be easily proved with the use of equation (20).

Formulas (20) and (21) are also valid for the oblate spheroidal boundaries. The only difference in this case is that $D^{(2)}$ s change their signs and R_{2} is the minor semi-axis of the oblate spheroidal. So, $x_{2}^{(2)}$ changes its sign, while $x_{2}^{(4)}$ remains unchanged.

The resonance frequencies for the problem of two concentric spheres with radii R_{1} and R_{2}, used in equations (20) and (21), are given by the equation (equation (B1) in Appendix B) $D_{n n}^{0}=0$, or

$$
\begin{equation*}
\mathrm{j}_{n}\left(x_{1}^{0}\right) / \mathrm{n}_{n}\left(x_{1}^{0}\right)=\mathrm{j}_{n}\left(x_{2}^{0}\right) / \mathrm{n}_{n}\left(x_{2}^{0}\right), \quad x_{1}^{0}=x_{2}^{0} / \tau, \quad \tau=R_{2} / R_{1} . \tag{22}
\end{equation*}
$$

By using equation (22), equations (B1)-(B5) from Appendix B, as well as various recurrence relations and Wronskians for spherical Bessel functions [9] in equations (20) and (21), one finally obtains after lengthy but straightforward calculations the explicit expressions

$$
\begin{gather*}
x_{2}^{(2)}=E\left[1-\tau \frac{\mathrm{n}_{n}^{2}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{2}\left(x_{1}^{0}\right)}\right]^{-1}, \quad E=x_{2}^{0} \frac{n^{2}+m^{2}+n-1}{(2 n-1)(2 n+3)}, \tag{23}\\
x_{2}^{(4)}=\left\{H+\tau \frac{\left(x_{2}^{0}\right)^{2} x_{2}^{(2)} \mathrm{n}_{n}\left(x_{2}^{0}\right)}{2(2 n+1) \mathrm{n}_{n}^{2}\left(x_{1}^{0}\right)}\left[\frac{(n+m+1)(n+m+2)}{(2 n+3)^{2}} \mathrm{n}_{n+2}\left(x_{2}^{0}\right)\right.\right.
\end{gather*}
$$

$$
\begin{align*}
& \left.-\frac{(n-m-1)(n-m)}{(2 n-1)^{2}} \mathrm{n}_{n-2}\left(x_{2}^{0}\right)\right]+\left(x_{2}^{(2)}\right)^{2}\left[\tau \frac{\mathrm{n}_{n}\left(x_{2}^{0}\right) \mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{2}\left(x_{1}^{0}\right)}\right. \\
& \left.-\frac{\mathrm{n}_{n}^{2}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{2}\left(x_{1}^{0}\right)}\left(\frac{1}{x_{1}^{0}}+\frac{\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)}{\mathrm{n}_{n}\left(x_{1}^{0}\right)}\right)\right]-\frac{\tau^{3} \mathrm{n}_{n}\left(x_{2}^{0}\right)}{4(2 n+1) \mathrm{n}_{n}\left(x_{1}^{0}\right)}\left[\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]}{(2 n+3)^{2}(2 n+5) \mathrm{w}_{n+2, n+2}\left(x_{2}^{0}, x_{1}^{0}\right)}\right. \\
& \left.\left.\left.+\frac{\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)}{(2 n-3)(2 n-1)^{2} \mathrm{w}_{n-2, n-2}\left(x_{2}^{0}, x_{1}^{0}\right)}\right]\right\}\right\}\left[1-\tau \frac{\mathrm{n}_{n}^{2}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{2}\left(x_{1}^{0}\right)}\right]^{-1} \tag{24}
\end{align*}
$$

where the primes denote derivatives with respect to the argument, while

$$
\begin{align*}
H= & \frac{\left(x_{2}^{(2)}\right)^{2}}{x_{2}^{0}}+\frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}}\left\{x_{2}^{(2)}\left[\left(x_{2}^{0}\right)^{2}-(n+1)(2 n+3)\right]\right. \\
& +2\left(x_{2}^{0}\right)^{3}\left[\frac{1-4 m^{2}}{(2 n-1)(2 n+3)(2 n+7)}\right. \\
& \left.\left.+\frac{(n+m+3)(n+m+4)}{2(2 n+5)}\left(\frac{2 n+3}{\left(x_{2}^{0}\right)^{2}}-\frac{2}{2 n+7}\right)\right]\right\} \\
& -\frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)}\left\{x_{2}^{(2)}\left[\left(x_{2}^{0}\right)^{2}-n(2 n-1)\right]-2\left(x_{2}^{0}\right)^{3}\left[\frac{1-4 m^{2}}{(2 n-5)(2 n-1)(2 n+3)}\right.\right. \\
& \left.\left.-\frac{(n-m-3)(n-m-2)}{8(2 n-3)}\left(\frac{2 n-1}{\left(x_{2}^{0}\right)^{2}}-\frac{2}{2 n-5}\right)\right]\right\} \tag{25}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{w}_{v v}\left(x_{2}^{0}, x_{1}^{0}\right)=\mathrm{j}_{v}\left(x_{2}^{0}\right) \mathrm{n}_{v}\left(x_{1}^{0}\right)-\mathrm{n}_{v}\left(x_{2}^{0}\right) \mathrm{j}_{v}\left(x_{1}^{0}\right) . \tag{26}
\end{equation*}
$$

It is evident that equation (17) can be written in the form $x_{2}(h)=x_{2}^{0}\left[1+g^{(2)} h^{2}+g^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right)\right]$. So, the eigenfrequencies in the cavities of Figures 1 and 2 are given by the expression

$$
\begin{equation*}
f_{n s m}(h)=f_{n s}(0)\left[1+g_{n s m}^{(2)} h^{2}+g_{n s m}^{(4)} h^{4}+\mathcal{O}\left(h^{6}\right)\right], \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n s m}^{(2)}=\left(x_{2}^{(2)}\right)_{n s m} /\left(x_{2}^{0}\right)_{n s}, \quad g_{n s m}^{(4)}=\left(x_{2}^{(4)}\right)_{n s m} /\left(x_{2}^{0}\right)_{n s} . \tag{28}
\end{equation*}
$$

It is clear that one can start the analysis, equivalently, by interchanging j_{n} and n_{n} in equation (1). Following next the same procedure as before, one obtains again formulas (23) and (24) with the aforementioned interchanges (formula (22) remains the same). One more difference in equation (24) is that one should also change the minus signs in front of the two fractions containing $\mathrm{w}_{v v}\left(x_{2}^{0}, x_{1}^{0}\right)$ in their denominators into plus signs. This last change is necessary due to the fact that in the numerators of these fractions one has used Wronskians of Bessel functions, which change their signs with the above interchanges.

The former remarks mean also that formulas equivalent to equations (23) and (24) are obtained by replacing there n_{v} and n_{v}^{\prime} by j_{v} and j_{v}^{\prime}, respectively, except in $\mathrm{W}_{v v}$ which keeps the form (26). This was verified numerically for various values of the parameters. Especially for equation (23) this is also evident from equation (22). These equivalent formulas are
the only ones which can be used in the calculations in any case that $\mathrm{n}_{n}\left(x_{1}^{0}\right)=0$ (in this case $\mathrm{j}_{n}\left(x_{1}^{0}\right) \neq 0$, while from equation (22) one obtains $\mathrm{n}_{n}\left(x_{2}^{0}\right)=0$ and $\left.\mathrm{j}_{n}\left(x_{2}^{0}\right) \neq 0\right)$. In analogy, equations (23) and (24) are the only formulas which can be used in the calculations in any case that $\mathrm{j}_{n}\left(x_{1}^{0}\right)=0$ (in this case $\mathrm{n}_{n}\left(x_{1}^{0}\right) \neq 0$, while from equation (22) one has $\mathrm{j}_{n}\left(x_{2}^{0}\right)=0$ and $\left.\mathrm{n}_{n}\left(x_{2}^{0}\right) \neq 0\right)$.

By using in equations (23) and (24) the small argument formulas for the various Bessel functions [9] as $R_{1} \rightarrow 0$ (for the cavity of Figure 1) one obtains, after some manipulation, the expressions for $x_{2}^{(2)}$ and $x_{2}^{(4)}$ in the case of a simple spheroidal cavity with major semi-axis R_{2} and interfocal distance d (i.e., in the absence of the inner sphere). The same expressions were also obtained by the independent solution, from the beginning, of this last problem and are:

$$
\begin{equation*}
x_{2}^{(2)}=E, \quad x_{2}^{(4)}=H \tag{29}
\end{equation*}
$$

It should be noticed that formulas (29) do not contain any Bessel functions, while x_{2}^{0} there are roots of the equation $\mathrm{j}_{n}\left(x_{2}^{0}\right)=0$.

The results (23)-(25) and (29) can be obtained also by an independent shape perturbation method, in which the pressure field is expressed in terms of spherical wave functions only. Geometrical relations expressing the spheroidal boundary in terms of spherical coordinates are used. In this method there is no need for spheroidal wave functions and the expansion formulas connecting them with the concentric spherical ones. This alternative procedure provides a very convincing check on the results of the present section, but it is not possible to be presented here without making the manuscript extremely lengthy. So, it will be the subject of a forthcoming paper.

3. NEUMANN BOUNDARY CONDITIONS

In this case the expansion for p that corresponds to equation (1) and satisfies the boundary condition $\partial p / \partial r=0$ at $r=R_{1}$ is

$$
\begin{equation*}
p=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[\mathrm{j}_{n}(k r)-\mathrm{n}_{n}(k r) \mathrm{j}_{n}^{\prime}\left(x_{1}\right) / \mathrm{n}_{n}^{\prime}\left(x_{1}\right)\right] \mathrm{P}_{n}^{m}(\cos \theta)\left[A_{n m} \cos m \varphi+B_{n m} \sin m \varphi\right] \tag{30}
\end{equation*}
$$

In order to satisfy the remaining boundary condition $\partial p / \partial \mu=0(\partial p / \partial \xi=0)$ at $\mu=\mu_{0}$ $\left(\xi=\xi_{0}\right)$ one follows steps identical to those for the Dirichlet case, which lead again to the infinite set (4) with the difference that $\alpha_{\text {lnm }}$ is now given by the expression

$$
\begin{equation*}
\alpha_{l n m}=\frac{2 \mathrm{i}^{-n}(n+m)!}{(2 n+1)(n-m)!} d_{n-m}^{m l}\left[\frac{\partial \mathbf{R}_{m l}^{(1)}\left(c, \cosh \mu_{0}\right)}{\partial \mu}-\frac{\partial \mathbf{R}_{m l}^{(2)}\left(c, \cosh \mu_{0}\right)}{\partial \mu} \frac{\mathrm{j}_{n}^{\prime}\left(x_{1}\right)}{\mathrm{n}_{n}^{\prime}\left(x_{1}\right)}\right] \tag{31}
\end{equation*}
$$

The remarks after equation (5) are again valid in this case. From equation (A25) of Appendix A one obtains

$$
\begin{align*}
\frac{\partial \mathrm{R}_{m l}^{(\sigma)}\left(c, \cosh \mu_{0}\right)}{\partial \mu} & =\frac{(l-m)!}{(l+m)!} \tanh ^{m-1} \mu_{0} \sum_{r=0,1}^{\infty} \mathrm{i}^{r+m-1} d_{r}^{m l} \frac{(r+2 m)!}{r!} \\
& \times\left[\left(x_{2}-\frac{c^{2}}{x_{2}}\right) \mathrm{z}_{r+m}^{(\sigma)}\left(x_{2}\right)+\frac{c^{2}}{x_{2}^{2}} m \mathrm{z}_{r+m}^{(\sigma)}\left(x_{2}\right)\right] \tag{32}
\end{align*}
$$

Setting $r=l-m \pm 2 q$ in equation (32) and following the same steps as for the Dirichlet case, one obtains, in place of equation (7), the equation

$$
\begin{align*}
\frac{\partial \mathbf{R}_{m l}^{(\sigma)}\left(c, \cosh \mu_{0}\right)}{\partial \mu}= & \frac{(l-m)!}{(l+m)!} \tanh ^{m-1} \mu_{0} d_{l-m}^{m l}\left\{\frac{(l+m)!}{(l-m)!}\left[\left(x_{2}-\frac{c^{2}}{x_{2}}\right) \mathbf{z}^{\left.(\sigma)^{\prime}\right)}\left(x_{2}\right)+\frac{c^{2}}{x_{2}^{2}} m z_{l}^{(\sigma)}\left(x_{2}\right)\right]\right. \\
& +\sum_{u=1}^{\infty} c^{2 u}\left[\sum _ { q = 1 } ^ { u } (- 1) ^ { q } \frac { (l + m + 2 q) ! } { (l - m + 2 q) ! } \left\{\left(x_{2}-\frac{c^{2}}{x_{2}}\right) \mathrm{z}_{l_{l}^{(\sigma)^{\prime}}{ }_{2 q}\left(x_{2}\right)}\right.\right. \\
& \left.+\frac{c^{2}}{x_{2}^{2}} m \mathrm{z}_{l+2 q}^{(\sigma)}\left(x_{2}\right)\right\} v_{2 u-2 q}^{m l+}(2 q) a_{2 q, 0}^{m l+}+\sum_{q=1}^{\min \left(q_{\text {max }} u\right)}(-1)^{q} \frac{(l+m-2 q)!}{(l-m-2 q)!} \\
& \left.\left.\times\left\{\left(x_{2}-\frac{c^{2}}{x_{2}}\right) \mathrm{z}_{l-2 q}^{(\sigma)}\left(x_{2}\right)+\frac{c^{2}}{x_{2}^{2}} m z_{l-2 q}^{(\sigma)}\left(x_{2}\right)\right\} v_{2 u-2 q}^{m l-}(2 q) a_{2 q, 0}^{m l-}\right]\right\} \tag{33}
\end{align*}
$$

One substitutes from equation (33) into equation (31) and next divides $\alpha_{\text {lnm }}$ by $2\left(d_{l-m}^{m l}\right)^{2} \mathrm{i}^{-n}(n+m)!\tanh ^{m-1} \mu_{0} /[(2 n+1)(n-m)!]$, in an analogous manner as for the Dirichlet case. The remarks after equation (7) are also valid here. The same is true for equations (8)-(21), but with different expressions for the various expansion coefficients, which are given in Appendix B. In place of equation (22) one now has

$$
\begin{equation*}
\mathrm{j}_{n}^{\prime}\left(x_{1}^{0}\right) / \mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)=\mathrm{j}_{n}^{\prime}\left(x_{2}^{0}\right) / \mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right), \quad x_{1}^{0}=x_{2}^{0} / \tau \tag{34}
\end{equation*}
$$

By using equation (34), and equations (B6)-(B10) from Appendix B, the recurrence relations and Wronskians for spherical Bessel functions [9] in equations (20) and (21), one can finally obtain after laborious but straightforward calculations the explicit expressions for $x_{2}^{(2)}$ and $x_{2}^{(4)}$:

$$
\begin{gather*}
x_{2}^{(2)}=U\left[1-\tau^{3}\left(\frac{\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)}\right)^{2} \frac{\left(x_{1}^{0}\right)^{2}-n(n+1)}{\left(x_{2}^{0}\right)^{2}-n(n+1)}\right]^{-1}, \\
U=x_{2}^{0}\left\{\frac{n^{2}+m^{2}+n-1}{(2 n-1)(2 n+3)}-\frac{1}{(2 n+1)\left[\left(x_{2}^{0}\right)^{2}-n(n+1)\right]}\right. \\
\left.\times\left[\frac{\left(n^{2}-m^{2}\right)(n+1)}{2 n-1}-\frac{\left[(n+1)^{2}-m^{2}\right] n}{2 n+3}\right]\right\} \tag{35}\\
x_{2}^{(4)}=x_{2}^{(2)}-\frac{\left(x_{2}^{(2)}\right)^{2}}{x_{2}^{0}}+\frac{1}{\left(x_{2}^{0}\right)^{2}-n(n+1)}\left\{Y+\frac{\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)\left[\left(x_{1}^{0}\right)^{2}-n(n+1)\right]}{\left(\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)\right)^{2}}\right. \\
\times\left\{\frac { \tau ^ { 3 } (x _ { 2 } ^ { 0 }) ^ { 2 } x _ { 2 } ^ { (2) } } { 2 (2 n + 1) } \left[\frac{(n+m+1)(n+m+2)}{(2 n+3)^{2}} \mathrm{n}_{n+2}^{\prime}\left(x_{2}^{0}\right)\right.\right. \\
-
\end{gather*}
$$

$$
\begin{align*}
& \left.+\frac{\tau X_{2}^{0}}{\left(x_{1}^{0}\right)^{2}}\left[m x_{2}^{(2)} \mathrm{n}_{n}\left(x_{2}^{0}\right)+x_{2}^{0}\left(x_{2}^{(2)}\right)^{2} \mathrm{n}_{n}^{\prime \prime}\left(x_{2}^{0}\right)-x_{1}^{0}\left(x_{2}^{(2)}\right)^{2} \mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right) \frac{\mathrm{n}_{n}^{\prime \prime}\left(x_{1}^{0}\right)}{\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)}\right]\right\} \\
& -\tau x_{2}^{0}\left(\frac{x_{2}^{(2)}}{x_{1}^{0}}\right)^{2}\left(\frac{\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)}\right)^{2}\left[\left(x_{1}^{0}\right)^{2}-2 n(n+1)\right]-\frac{\tau^{3} \mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)}{4\left(x_{1}^{0}\right)^{2}(2 n+1) \mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)} \\
& \times\left[\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]\left[\left(x_{1}^{0}\right)^{2}-n(n+3)\right]\left[\left(x_{2}^{0}\right)^{2}-n(n+3)\right]}{(2 n+3)^{2}(2 n+5) \mathrm{w}_{n+2, n+2}^{\prime}\left(x_{2}^{0}, x_{1}^{0}\right)}\right] \\
& \left.\left.+\frac{\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)\left[\left(x_{1}^{0}\right)^{2}-(n-2)(n+1)\right]\left[\left(x_{2}^{0}\right)^{2}-(n-2)(n+1)\right]}{(2 n-3)(2 n-1)^{2} \mathrm{w}_{n-2, n-2}^{\prime}\left(x_{2}^{0}, x_{1}^{0}\right)}\right]\right\} \\
& \times\left[1-\tau^{3}\left(\frac{\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)}{\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)}\right)^{2} \frac{\left(x_{1}^{0}\right)^{2}-n(n+1)}{\left(x_{2}^{0}\right)^{2}-n(n+1)}\right]^{-1}, \tag{36}
\end{align*}
$$

where

$$
\begin{align*}
Y= & \frac{\left(x_{2}^{(2)}\right)^{2}}{x_{2}^{0}}\left[\left(x_{2}^{0}\right)^{2}-2 n(n+1)\right]+\frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}} \\
& \times\left\{x_{2}^{(2)}\left[\left(x_{2}^{0}\right)^{4}-3\left(x_{2}^{0}\right)^{2}(n+2)^{2}+n(n+3)(n+4)(2 n+3)\right]\right. \\
& +\left[\left(3 x_{2}^{(2)}-x_{2}^{0}\right)(2 n+3)+\frac{2\left(1-4 m^{2}\right)\left(x_{2}^{0}\right)^{3}}{(2 n-1)(2 n+3)(2 n+7)}\right] \\
& \times\left[\left(x_{2}^{0}\right)^{2}-n(n+3)\right]-m x_{2}^{0}\left[\left(x_{2}^{0}\right)^{2}-n(2 n+3)\right]-\frac{(n+m+3)(n+m+4)}{4(2 n+5)(2 n+7)} \\
& \left.\times\left[2\left(x_{2}^{0}\right)^{5}-\left(6 n^{2}+30 n+35\right)\left(x_{2}^{0}\right)^{3}+n(n+5)(2 n+3)(2 n+7) x_{2}^{0}\right]\right\} \\
& -\frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)}\left\{x _ { 2 } ^ { (2) } \left[\left(x_{2}^{0}\right)^{4}-3\left(x_{2}^{0}\right)^{2}(n-1)^{2}\right.\right. \\
& +(n-3)(n-2)(2 n-1)(n+1)] \\
& -\left[\left(3 x_{2}^{(2)}-x_{2}^{0}\right)(2 n-1)+\frac{2\left(1-4 m^{2}\right)\left(x_{2}^{0}\right)^{3}}{(2 n-5)(2 n-1)(2 n+3)}\right]\left[\left(x_{2}^{0}\right)^{2}-(n-2)(n+1)\right] \\
& -m x_{2}^{0}\left[\left(x_{2}^{0}\right)^{2}-(2 n-1)(n+1)\right]-\frac{(n-m-3)(n-m-2)}{4(2 n-5)(2 n-3)} \\
& \left.\times\left[2\left(x_{2}^{0}\right)^{5}-\left(6 n^{2}-18 n+11\right)\left(x_{2}^{0}\right)^{3}+(n-4)(n+1)(2 n-5)(2 n-1) x_{2}^{0}\right]\right\} \tag{37}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{w}_{v v}^{\prime}\left(x_{2}^{0}, x_{1}^{0}\right)=\mathrm{j}_{v}^{\prime}\left(x_{2}^{0}\right) \mathrm{n}_{v}^{\prime}\left(x_{1}^{0}\right)-n_{v}^{\prime}\left(x_{2}^{0}\right) \mathrm{j}_{v}^{\prime}\left(x_{1}^{0}\right) . \tag{38}
\end{equation*}
$$

The remarks after equation (28) are also valid in this case, so equations (35) and (36) give the same results if one replaces $\mathrm{n}_{v}, \mathrm{n}_{v}^{\prime}$ and $\mathrm{n}_{v}^{\prime \prime}$ by $\mathrm{j}_{v}, \mathrm{j}_{v}^{\prime}$ and $\mathrm{j}_{v}^{\prime \prime}$, respectively, except in $\mathrm{w}_{v v}^{\prime}$ which keeps the form (38). This was verified numerically for various values of the parameters. Especially for equation (35) this is also evident from equation (34). The equivalent formulas are the only ones which can be used in the calculations in any case that $\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right)=0$ (in this case $\mathrm{j}_{n}^{\prime}\left(x_{1}^{0}\right) \neq 0$, while from equation (34) $\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right)=0$ and $\mathrm{j}_{n}^{\prime}\left(x_{2}^{0}\right) \neq 0$). In analogy, equations (35) and (36) are the only formulas which can be used in the calculations in any case that $\mathrm{j}_{n}^{\prime}\left(x_{1}^{0}\right)=0$ (in this case $\mathrm{n}_{n}^{\prime}\left(x_{1}^{0}\right) \neq 0$, while from equation (34) $\mathrm{j}_{n}^{\prime}\left(x_{2}^{0}\right)=0$ and $\left.\mathrm{n}_{n}^{\prime}\left(x_{2}^{0}\right) \neq 0\right)$.

Following next the same procedure as that described for the Dirichlet case, one obtains the expressions for $x_{2}^{(2)}$ and $x_{2}^{(4)}$ in a simple spheroidal cavity with major semi-axis R_{2} and interfocal distance d. These expressions are

$$
\begin{equation*}
x_{2}^{(2)}=U, \quad x_{2}^{(4)}=x_{2}^{(2)}-\frac{\left(x_{2}^{(2)}\right)^{2}}{x_{2}^{0}}+\frac{Y}{\left(x_{2}^{0}\right)^{2}-n(n+1)} . \tag{39}
\end{equation*}
$$

Formulas (39) do not contain any Bessel functions, while x_{2}^{0} there are roots of the equation $\mathrm{j}_{n}^{\prime}\left(x_{2}^{0}\right)=0$.

The same results (35)-(39) are obtained also by the same shape perturbation method referred to after equation (29), providing an excellent check for their validity.

4. NUMERICAL RESULTS AND DISCUSSION

In Tables 1 and 2 the roots $\left(x_{2}^{0}\right)_{n s}(n=0-3, s=1-4)$ of equation (22) as well as the corresponding values of $g_{n s m}^{(2)}$ and $g_{n s m}^{(4)}$ are given in the Dirichlet case for $\tau=x_{2} / x_{1}=R_{2} / R_{1}=1 \cdot 35,2 \cdot 0$ (cavity of Figure 1) and $\tau=0 \cdot 5,0 \cdot 7$ (cavity of Figure 2). In Tables 3 and 4 the roots $\left(x_{2}^{0}\right)_{n s}$ of equation (34) are given and the corresponding values of $g_{n s m}^{(2)}$ and $g_{n s m}^{(4)}$ in the Neumann case, for the same τ s as before.

For the oblate spheroidal boundaries the $g^{(2)}$ s change their signs, while the $g^{(4)}$ s remain the same.

The case $n=0(m=0)$ for the Dirichlet problem requires special treatment. In this case equation (22) reduces to $\tan x_{1}^{0}=\tan x_{2}^{0}$, with roots $x_{2}^{0}=\tau x_{1}^{0}=x_{1}^{0} \pm s \pi= \pm \tau s \pi /(\tau-1)$, $s=1,2, \ldots$, where the upper/lower sign corresponds to Figures 1 and 2. So, $\cos x_{2}^{0}=(-1)^{s} \cos x_{1}^{0}, \sin x_{2}^{0}=(-1)^{s} \sin x_{1}^{0}$ and $g_{o s o}^{(2)}=\tau /[3(\tau-1)]$ is independent of s, as is easily proved from equation (23) (or its equivalent one with n_{0} replaced by j_{0}) and equation (28), and confirmed by the corresponding results in Tables 1 and 2. In particular when $\pm s /(\tau-1)=v+1 / 2 \quad($ or $v), \quad v$ being an integer, $\quad \cos x_{1}^{0}=\cos x_{2}^{0}=0$, namely $\mathrm{n}_{0}\left(x_{1}^{0}\right)=n_{0}\left(x_{2}^{0}\right)=0$ (or $\sin x_{1}^{0}=\sin x_{2}^{0}=0$, namely $\mathrm{j}_{0}\left(x_{1}^{0}\right)=\mathrm{j}_{0}\left(x_{2}^{0}\right)=0$), so the formulas equivalent to equations (23) and (24) and referred to after equation (28) (or formulas $(23,24)$) are the only ones which can be used in the calculations, as is explained there.
On the contrary, it can be seen easily that the case $n=0(m=0)$ for the Neumann problem requires no special treatment.

A general remark on the $g_{n s m}^{(2)}$ from Tables $1-4$ is that for $s>2$, their values stabilize and become independent of s and that they, as well as $g_{n s m}^{(4)}$, decrease rapidly with increasing/decreasing τ, for the cavity of Figures 1 and 2 . This last result is expected from physical intuition and confirmed by available data for further values of τ. Both these observations agree also with the results of references [7, 8].
The method of the present work can be extended easily for the calculation of higher order terms, like, for example, $g_{n s m}^{(6)}$, in the expansion series of $f_{n s m}(h)$, with respect to h.
Table 1
Dirichlet conditions, cavity of Figure 1, $\tau=x_{2} / x_{1}=1.35(2 \cdot 0)$

	n	m	s			
			1	2	3	4
$\left(x_{2}^{0}\right)_{n s}$	0		$12 \cdot 11757$ (2π)	$24 \cdot 23514$ (4 1)	$36 \cdot 35271$ (6 6)	48.47029 (8 π)
	1		$12 \cdot 22696$ (6.57201)	$24 \cdot 29059$ (12.72136)	36.38978 (18.95439)	$49 \cdot 49811$ (25.21178)
	2		12.44283 (7.11158)	$24 \cdot 40111$ (13.02614)	$36 \cdot 46378$ (19•16254)	$49 \cdot 55370$ (25.36922)
	3		12.75965 (7.84504)	24.56597 (13.47113)	$36 \cdot 57452$ (19.47107)	48.63697 (25.60381)
$g_{n s m}^{(2)}$	0	0	$1 \cdot 28571$ (0.66667)	$1 \cdot 28571$ (0.66667)	$1 \cdot 28571$ (0.66667)	$1 \cdot 28571$ (0.66767)
	1	0	$0 \cdot 75963$ (0.37609)	$1 \cdot 76838$ (0.39289)	$0 \cdot 77008$ (0.39672)	$0 \cdot 77060$ (0.39813)
		1	1.51926 (0.75218)	1.53675 (0.78578)	1.54017 (0.79344)	1.54120 (0.79626)
	2	0	$0 \cdot 87772$ (0.40411)	$0 \cdot 90757$ (0.45194)	0.91351 (0.46472)	$0 \cdot 91563$ (0.46960)
		1	1.05326 (0.48493)	1.08908 (0.54232)	1.09622 (0.55767)	1.09875 (0.56352)
		2	1.57989 (0.72740)	1.63363 (0.81349)	1.64432 (0.83650)	$1 \cdot 64813$ (0.84527)
	3	0	$0 \cdot 86350$ (0.36933)	0.92097 (0.44222)	0.93296 (0.46602)	0.93719 (0.47557)
		1	$0 \cdot 94200$ (0.40291)	$1 \cdot 00470$ (0.48242)	1.01777 (0.50839)	1.02239 (0.51880)
		2	$1 \cdot 17750$ (0.50363)	$1 \cdot 25587$ (0.60302)	$1 \cdot 27221$ (0.63548)	$1 \cdot 27799$ (0.64851)
		3	1.57001 (0.67151)	$1 \cdot 67450$ (0.80403)	$1 \cdot 69628$ (0.84731)	1.70399 (0.86467)
$g_{n s m}^{(4)}$	0	0	$-9.55639(0 \cdot 19168)$	-45.5080 (-1.54597)	-105.4383 (-4.46675)	$-189.3598(-8.55957)$
	1	0	-4•19268 (0.17475)	-20.8085 (-0.58878)	- 48.5464 (-1.93239)	-87.3736 (-3.82385)
		1	-0.57998 (0.74413)	-11.6380 (0.26347)	-30.1241 (-0.62648)	-55.9952 (-1.88544)
	2	0	9.86410 (0.86511)	$34.5571(2 \cdot 15138)$	$75 \cdot 6305$ (4.17271)	133.1015 (6.98391)
		1	-1.09988 (0.43623)	- 10.4585 (0.08807)	- 26.1693 (-0.65388)	-48.1824 (-1.71900)
		2	1.77139 (0.82112)	-2.84902 (0.72508)	- 10.6930 (0.37208)	-21.6957 (-0.15390)
	3	0	$4 \cdot 27583$ (0.53486)	12.3799 (1.05780)	25.7251 (1.74059)	$44 \cdot 3768$ (2.66268)
		1	$2 \cdot 90572$ (0.51198)	$6 \cdot 33954$ (0.82022)	11.8826 (1-12658)	19.6054 (1.51724)
		2	$0 \cdot 56766$ (0.51754)	-4.72652 (0.43203)	- 13.7774 (0.03644)	-26.5035 (-0.56614)
		3	$2 \cdot 57844$ (0.77415)	$0 \cdot 34671$ (0.86692)	-3.65229 (-0.72596)	-9.33545 (0.47134)

Table 2
Dirichlet conditions, cavity of Figure 2, $\tau=x_{2} / x_{1}=0 \cdot 5(0 \cdot 7)$

	n	m	s			
			1	2	3	4
$\left(x_{2}^{0}\right)_{n s}$	0		π (7.33038)	2π (14.66077)	3π (21.99115)	4π (29.32153)
	1		$3 \cdot 28601$ (7.42345)	$6 \cdot 36068$ (14.70820)	$9 \cdot 47720$ (22.02288)	$12 \cdot 60589$ (29.34537)
	2		$3 \cdot 55579$ (7.60608)	$6 \cdot 51307$ (14.80262)	9.58127 (22.08623)	$12 \cdot 68461$ (29.39298)
	3		3.92252 (7.87191)	6.73556 (14.94316)	9.73553 (22.18091)	12.80190 (29.46425)
$g_{n s m}^{(2)}$	0	0	$-0.33333(-0.77778)$	$-0.33333(-0.77778)$	$-0.33333(-0.77778)$	-0.33333 (-0.77778)
	1	0	$-0.17609(-0.45283)$	-0.19289 (-0.46303)	-0.19672 (-0.46502)	-0.19813 (-0.46574)
		1	-0.35218 (-0.90565)	-0.38578 (-0.92607)	-0.39344 (-0.93004)	-0.39626 (-0.93149)
	2	0	$-0 \cdot 16601(-0 \cdot 50849)$	-0.21384 (-0.54275)	$-0.22663(-0.54977)$	$-0.23150(-0.55229)$
		1	-0.19922 (-0.61019)	-0.25661 (-0.65130)	-0.27195 (-0.65973)	-0.27780 (-0.66274)
		2	-0.29883 (-0.91529)	-0.38491 (-0.97695)	-0.40793 (-0.98959)	$-0.41670(-0.99411)$
	3	0	$-0 \cdot 12489(-0.48026)$	-0.19777 (-0.54456)	$-0.22158(-0.55859)$	$-0.23113(-0.56367)$
		1	$-0.13624(-0.52393)$	-0.21575 (-0.59407)	-0.24172 (-0.60937)	-0.25214 (-0.61491)
		2	$-0.17030(-0.65491)$	-0.26969 (-0.74259)	-0.30215 (-0.76171)	-0.31517 (-0.76864)
		3	$-0.22707(-0.87321)$	-0.35959 (-0.99011)	$-0.40287(-1.01561)$	$-0.42023(-1.02485)$
$g_{n m m}^{(4)}$	0	0	$-0 \cdot 11435$ (-2.61677)	-0.55194 (-11.9018)	$-1.28280(-27.3805)$	-2.30624 (-49.0529)
	1	0	$-0.07098(-1.25964)$	-0.27654 (-5.55468)	$-0.61576(-12.7198)$	-1.08984 (-22.7489)
		1	$0 \cdot 02813$ (-0.26966)	-0.11416 (-3.13258)	-0.34216 (-7.91439)	$-0.65902(-14.5925)$
	2	0	$0 \cdot 12763$ (-2.42596)	$0 \cdot 42135$ (8.79319)	$0 \cdot 91916$ (19.3987)	$1 \cdot 61910$ (34.2454)
		1	$-0.00872(-0.46475)$	$-0 \cdot 13365(-2 \cdot 89664)$	$-0.32998(-6.95777)$	$-0.60044(-12.6440)$
		2	0.08554 (0.37630)	$0.01502(-0.83665)$	-0.08818 (-2.86743)	$-0.22561(-5.71071)$
	3	0	0.06275 (0.98268)	$0 \cdot 15389$ (3.05656)	$0 \cdot 31092$ (6-49914)	$0 \cdot 53593$ (11.3184)
		1	$0 \cdot 04852$ (0.61273)	0.08122 (1.47711)	$0 \cdot 14192$ (2.90357)	$0 \cdot 23311$ (4.90090)
		2	$0.03511(-0.00212)$	-0.04095 (-1.39939)	$-0.16123(-3.74467)$	-0.32078 (-7.02608)
		3	$0 \cdot 11045$ (0.62304)	$0 \cdot 07490$ (0.01256)	$0.01302(-1.03011)$	-0.06207 (-2.48598)

Table 3

	n	m	s			
			1	2	3	4
$\overline{\left(x_{2}^{0}\right)_{n s}}$	0		12.22696 (6.57201)	$24 \cdot 29059$ (12.72136)	$36 \cdot 38977$ (18.95439)	$48 \cdot 49810$ (25-21178)
	1		$1 \cdot 61845$ (1.84027)	12.34029 (6.91152)	$24 \cdot 34656$ (12.88524)	$36 \cdot 42699$ (19.06205)
	2		$2 \cdot 80178$ (3.15118)	12.56411 (7.55362)	$24 \cdot 45813$ (13.20870)	$36 \cdot 50130$ (19.27601)
	3		$3 \cdot 95925$ (4.38996)	12.89316 (8.43887)	$24 \cdot 62459$ (13.68401)	$36 \cdot 61253$ (19.59369)
$g_{n s m}^{(2)}$	0	0	$1 \cdot 26605$ (0.62682)	1.28063 (0.65482)	1.28344 (0.66121)	$1 \cdot 28443$ (0.66355)
	1	0	-0.26836 (-0.06598)	$0 \cdot 73727$ (0.33167)	$0 \cdot 76269$ (0.38041)	$0 \cdot 76753$ (0.39112)
		1	$0 \cdot 43516$ (0.40585)	$1 \cdot 49940$ (0.70123)	1.53186 (0.77256)	1.53796 (0.78768)
	2	0	$0 \cdot 05092$ (0.13226)	$0 \cdot 85465$ (0.35031)	$0 \cdot 90195$ (0.43783)	$0 \cdot 91104$ (0.45875)
		1	$0 \cdot 12691$ (0.19940)	1.03034 (0.42628)	1.08362 (0.52760)	1.09383 (0.55156)
		2	$0 \cdot 35488(0 \cdot 40085)$	1.55742 (0.65417)	1.62863 (0.79689)	$1 \cdot 64218$ (0.82998)
	3	0	$0 \cdot 10636$ (0•17879)	$0 \cdot 83862$ (0.30597)	0.91524 (0.42547)	0.93044 (0.45947)
		1	$0 \cdot 13133$ (0.20580)	$0 \cdot 91689$ (0.33575)	0.99901 (0.46505)	$1 \cdot 01528$ (0.50170)
		2	$0 \cdot 20624$ (0.28684)	$1 \cdot 15171$ (0.42507)	$1 \cdot 25035$ (0.58382)	$1 \cdot 26982$ (0.62839)
		3	$0 \cdot 33110$ (0.42189)	$1.54308(0.57393)$	1.66923 (0.78175)	$1.69405(0.83954)$
$g_{n s m}^{(4)}$	0	0	-9.32963 (0.28144)	-45.2651 (-1.43231)	-105.1880 (-4.35012)	$-189.0827(-8.44210)$
	1	0	$-0.46308(-0.10236)$	-4.06505 (0.25088)	- 20.6909 (-0.51955)	-48.4286 (-1.87052)
		1	$0 \cdot 44225$ (0.27332)	-0.51491 (0.76858)	- 11.5637 (0.30305)	-30.0498 (-0.58811)
	2	0	$0 \cdot 01999$ (0.00665)	9.71727 (0.82798)	34.3952 (2.09388)	$75 \cdot 4834$ (4•10145)
		1	$0 \cdot 05538(0 \cdot 13500)$	$-1.01054(0.49006)$	- 10.3867 (0.14231)	-26.0958 (-0.61203)
		2	$0 \cdot 28172$ (0.23731)	$1.79518(0.80756)$	-2.81827 (0.74360)	- 10.6517 (0.38912)
	3	0	$0 \cdot 02670$ (0.02214)	$4 \cdot 24043$ (0.52780)	12.3306 (1.06001)	25.6677 (1.72474)
		1	$0 \cdot 05228$ (0.07306)	$2 \cdot 90664$ (0.51510)	$6 \cdot 32362$ (0.83852)	11.8597 (1.12719)
		2	$0 \cdot 12215$ (0.18612)	$0 \cdot 63051$ (0.52851)	-4.68134 (0.47588)	-13.7373 (0.06591)
		3	$0 \cdot 21568(0 \cdot 24224)$	$2 \cdot 58774$ (0.72257)	$0 \cdot 36253(0 \cdot 87766)$	-3.63706 (0.73502)

Table 4
Neumann conditions, cavity of Figure 2, $\tau=x_{2} / x_{1}=0 \cdot 5(0 \cdot 7)$

	n	m	s			
			1	2	3	4
$\overline{\left(x_{2}^{0}\right)_{n s}}$	0		$3 \cdot 28601$ (7-42345)	$6 \cdot 36068$ (14.70820)	9.47720 (22.02289)	$12 \cdot 60589$ (29.34537)
	1		$0 \cdot 92013$ (1.15806)	3.45576 (7.52119)	6.44262 (14.75627)	9.53103 (22.05482)
	2		$1 \cdot 57559$ (2.00378)	$3 \cdot 77681$ (7.71337)	6.60435 (14.85199)	$9.63801(22 \cdot 11855)$
	3		$2 \cdot 19498$ (2.82951)	4.21944 (7.99392)	$6 \cdot 84200$ (14.99449)	9.79684 (22.21382)
$g_{n s m}^{(2)}$	0	0	-0.29349 (-0.75470)	-0.32149 (-0.77172)	$-0.32787(-0.77506)$	$-0.33022(-0.77625)$
	1	0	$0 \cdot 13904$ (0.30508)	$-0.11729(-0.42191)$	$-0.17574(-0.45507)$	-0.18894 (-0.46148)
		1	$0 \cdot 05762(0 \cdot 03646)$	-0.30842 (-0.88396)	-0.37490 (-0.92079)	-0.38876 (-0.92775)
	2	0	$0 \cdot 06397$ (0.14022)	-0.10313 (-0.47748)	-0.19641 (-0.53515)	-0.21910 (-0.54642)
		1	$0 \cdot 06538(0 \cdot 13128)$	$-0.13602(-0.58065)$	$-0.24022(-0.64428)$	-0.26506 (-0.65665)
		2	$0 \cdot 06959$ (0.10447)	-0.23469 (-0.89014)	-0.37165 (-0.97169)	-0.40296 (-0.98736)
	3	0	$0 \cdot 03928$ (0.10921)	$-0.05463(-0.44652)$	$-0.17793(-0.53680)$	-0.21356 (-0.55523)
		1	$0 \cdot 04108(0 \cdot 11115)$	$-0.06390(-0.49038)$	$-0.19607(-0.58654)$	-0.23394 (-0.60613)
		2	$0 \cdot 04650$ (0.11697)	-0.09173 (-0.62197)	-0.25048 (-0.73576)	-0.29505 (-0.75885)
		3	$0 \cdot 05552(0 \cdot 12668)$	$-0.13812(-0.84127)$	-0.34117 (-0.98448)	-0.39692 (-1.01338)
$g_{n s m}^{(4)}$	0	0	$-0.11569(-2.63040)$	$-0.56181(-11.9190)$	-1.29520 (-27.3965)	-2.31960 (-49.0709)
	1	0	$-0.00289(-0.06644)$	-0.04856 (-1.24528)	-0.27277 (-5.55688)	-0.61762 (-12.7246)
		1	$0 \cdot 04072(0 \cdot 13034)$	0.04317 (-0.26929)	-0.11399 (-3.13702)	-0.34481 (-7.91448)
	2	0	$0 \cdot 00981$ (0.07191)	$0 \cdot 16742$ (2.46086)	$0 \cdot 44287$ (8.81147)	0.93429 (19.4138)
		,	$-0.00376(-0.00442)$	$0 \cdot 01760$ (-0.44799)	-0.12788 (-2.89623)	$-0.33003(-6.96037)$
		2	$0 \cdot 01645$ (0.10179)	$0 \cdot 12542$ (0.38638)	$0 \cdot 02189$ (-0.83770)	-0.08753 (-2.86953)
	3	0	$-0.00603(0.02766)$	$0 \cdot 09477$ (1.01123)	$0 \cdot 17081$ (3.06660)	$0 \cdot 31960$ (6.50583)
		1	-0.00733 (0.02138)	0.08159 (0.63994)	$0 \cdot 09622$ (1-48477)	$0 \cdot 14836$ (2.90781)
		2	$-0.01005(0.01955)$	0.07448 (0.02220)	-0.02894 (-1.39674)	-0.15903 (-3.74526)
		3	-0.01066 (0.07320)	$0 \cdot 17062$ (0.64635)	$0 \cdot 09107$ (0.01415)	$0 \cdot 01638$ (-1.03045)

The procedure will be laborious but straightforward. For this purpose further expansion coefficients given in Appendix A will be used.

REFERENCES

1. P. M. Morse and H. Feshbach 1953 Methods of Theoretical Physics, Volume II. New York: McGraw-Hill.
2. J. A. Roumeliotis, J. D. Kanellopoulos and J. G. Fikioris 1991 Journal of the Acoustical Society of America 90, 1144-1148. Acoustic resonance frequency shifts in a spherical cavity with an eccentric inner small sphere.
3. J. A. Roumeliotis, J. D. Kanellopoulos and J. G. Fikioris 1992 Journal of the Franklin Institute 329, 413-427. Acoustic eigenfrequencies of a cylindrical/rectangular cavity, with an eccentric inner small sphere.
4. J. A. Roumeliotis and J. D. Kenellopoulos 1992 Journal of the Franklin Institute 329, 727-735. Acoustic eigenfrequencies and modes in a soft-walled spherical cavity with an eccentric inner small sphere.
5. J. A. Roumeliotis 1993 Journal of the Acoustical Society of America 93, 1710-1715. Eigenfrequencies of an acoustic rectangular cavity containing a rigid small sphere.
6. C. Flammer 1957 Spheroidal Wave Functions. Stanford CA: Stanford University Press.
7. J. D. Kanellopoulos and J. G. Fikioris 1978 Journal of the Acoustical Society of America 64, 286-297. Acoustic resonant frequencies in an eccentric spherical cavity.
8. J. A. Roumeliotis, A. B. M. Siddique Hossain and J. G. Fikioris 1980 Radio Science 15, 923-937. Cutoff wave numbers of eccentric circular and concentric circular-elliptic metallic wave guides.
9. M. Abramowitz and I. A. Stegun 1972 Handbook of Mathematical Functions. New York: Dover.
10. J. E. Burke 1966 Journal of Mathematics and Physics 45, 425-431. Note on spheroidal wave functions.
11. J. Meixner and F. W. Schäfke 1954. Mathieusche Funktionen und Sphäroidfunktionen. Berlin: Springer-Verlag.
12. D. S. Jones 1964 The Theory of Electromagnetism. Oxford: Pergamon Press.

APPENDIX A

In this Appendix, power series expansions for the prolate and the oblate angular spheroidal wave functions of the first kind $\mathbf{S}_{m n}^{(1)}(c, \eta)$ and of the second kind $\mathbf{S}_{m n}^{(2)}(c, \eta)$, with small arguments c, are derived for general integer values of m and n. The various expansion coefficients can also be used in the evaluation of the radial functions of any kind. The prolate angular spheroidal functions of the first kind are given by an infinite sum of the form $[1,6,9]$ (the superscript (1) is omitted as in the main text).

$$
\begin{equation*}
\mathbf{S}_{m n}(c, \eta)=\sum_{r=0,1}^{\infty} d_{r}^{m n}(c) \mathbf{P}_{m+r}^{m}(\eta) \tag{A1}
\end{equation*}
$$

where the prime indicates that the summation is over only those values of r having the same parity as $n-m$. The coefficients $d_{r}^{m n}(c)$ satisfy the following second order recurrence relation [1, 6]:

$$
\begin{align*}
& \frac{(2 m+r+2)(2 m+r+1) c^{2}}{(2 m+2 r+3)(2 m+2 r+5)} d_{r+2}^{m n}(c) \\
& \quad+\left[(m+r)(m+r+1)-\lambda_{m n}(c)+\frac{2(m+r)(m+r+1)-2 m^{2}-1}{(2 m+2 r-1)(2 m+2 r+3)} c^{2}\right] d_{r}^{m n}(c) \\
& \quad+\frac{r(r-1) c^{2}}{(2 m+2 r-3)(2 m+2 r-1)} d_{r-2}^{m n}(c)=0, \quad r \geqslant 0 \tag{A2}
\end{align*}
$$

In equation (A2) $\lambda_{m n}(c)$ denotes the eigenvalues and $d_{-r}^{m m}=0$ for $r>0$.
When c vanishes, the differential equation satisfied by $\mathrm{S}_{m n}$ becomes that satisfied by the associated Legendre functions. In this case $\mathbf{S}_{m n} \rightarrow \mathrm{P}_{n}^{m}, d_{n \rightarrow m}^{m n} \rightarrow 1(n \geqslant m)$ is the only non-zero coefficient and $\lambda_{m m}(0)=n(n+1)$.
Approximations for $\mathrm{S}_{n n}$ valid for small values of c follow by expanding $d_{r}^{m n}(c)$ in power series in c of the form

$$
\begin{align*}
d_{n-m}^{m m} q_{2 q}(c)= & {\left[a_{2 q, 0}^{m m} c^{2 q}+a_{2 q, 2}^{m m} c^{2 q+2}+a_{2 q, 4}^{m m} c^{2 q+4}+\cdots\right] d_{n-m}^{m m}(c), } \\
& n-m \geqslant_{2 q-1}^{0+1}, \quad q=0,1,2, \ldots, \tag{A3}
\end{align*}
$$

where $a_{2 q, 2 k}^{m m}=0,(k \geqslant 0)$ if $0 \leqslant n-m<2 q$.
The expansion for $\lambda_{m n}(c)$ must be

$$
\begin{equation*}
\lambda_{m n}(c)=n(n+1)+1_{2}^{m n} c^{2}+1_{4}^{m n} c^{4}+1_{6}^{m n} c^{6}+\cdots . \tag{A4}
\end{equation*}
$$

In what follows the superscripts $m n$ are omitted from the various expansion cofficients, for simplicity.
By substituting from equations (A3) and (A4) into equation (A2) and by equating the coefficients of c^{2}, c^{4}, \ldots to zero separately, one obtains, with $r=n-m \geqslant 0$, from the coefficient of c^{2} and $c^{2 k+4}$, respectively,

$$
\begin{gather*}
l_{2}=\frac{2 n(n+1)-2 m^{2}-1}{(2 n-1)(2 n+3)}, \tag{A5}\\
\frac{(n+m+1)(n+m+2)}{(2 n+3)(2 n+5)} a_{2,2 k}^{+}+\frac{(n-m-1)(n-m)}{(2 n-3)(2 n-1)} a_{2,2 k}^{-}=l_{2 k+4}, \quad k=0,1,2, \ldots \tag{A6}
\end{gather*}
$$

Setting now $r=n-m \pm 2 q(q \geqslant 1, n-m \geqslant 2 q$ for the lower sign) in equation (A2) and using equations (A3) and (A4) one obtains, by equating to zero the coefficients of $c^{2 q}, c^{2 q+2}$ and $c^{2 q+2 k}$, respectively,

$$
\begin{gather*}
a_{2 q, 0}^{ \pm}=f^{ \pm}(2 q-2) a_{2 q-2,0}^{ \pm}, \quad a_{0,0}^{ \pm}=1, \quad q \geqslant 1, \tag{A7}\\
a_{2 q, 2}^{ \pm}=f^{ \pm}(2 q-2) a_{2 q-2,2}^{ \pm}+g^{ \pm}(2 q) a_{2,0,0}^{ \pm}, \quad a_{0,2}^{ \pm}=0, \quad q \geqslant 1, \tag{A8}\\
a_{2 q, 2 k}^{ \pm}=f^{ \pm}(2 q-2) a_{2 q-2,2 k}^{ \pm}+g^{ \pm}(2 q) a_{2 q, 2 k-2}^{ \pm}+h^{ \pm}(2 q) \sum_{j=2}^{k} l_{2 j} a_{2 q, 2 k-2 j}^{ \pm} \\
+p^{ \pm}(2 q+2) a_{2 q+2,2 k-4}^{ \pm}, \quad a_{0,2 k}^{ \pm}=0, \quad k \geqslant 2, q \geqslant 1, \tag{A9}
\end{gather*}
$$

where the following rotational substitutions have been made:

$$
\begin{align*}
& h^{ \pm}(2 q)= \pm 1 / 2 q(2 n \pm 2 q+1), \tag{A10}\\
& f^{ \pm}(2 q-2)=-\frac{[n+1 \pm(2 q-m-1)][n \pm(2 q-m-1)]}{[2 n \pm(4 q-3)][2 n+2 \pm(4 q-3)]} h^{ \pm}(2 q), \tag{All}\\
& g^{ \pm}(2 q)= {\left[l_{2}-\frac{2(n \pm 2 q)(n \pm 2 q+1)-2 m^{2}-1}{(2 n \pm 4 q-1)(2 n \pm 4 q+3)}\right] h^{ \pm}(2 q) } \\
&= \frac{2\left(1-4 m^{2}\right)}{(2 n-1)(2 n+3)(2 n \pm 4 q-1)(2 n \pm 4 q+3)}, \tag{A12}
\end{align*}
$$

$$
\begin{equation*}
p^{ \pm}(2 q+2)=-\frac{[n+1 \pm(2 q+m+1)][n \pm(2 q+m+1)]}{[2 n \pm(4 q+3)][2 n+2 \pm(4 q+3)]} h^{ \pm}(2 q) \tag{A13}
\end{equation*}
$$

From equation (A8) with $q=1$ one obtains

$$
\begin{equation*}
a_{2,2}^{ \pm}=g^{ \pm}(2) a_{2,0}^{ \pm}=v_{2}^{ \pm}(2) a_{2,0}^{ \pm}, \quad v_{2}^{ \pm}(2)=g^{ \pm}(2) \tag{A14}
\end{equation*}
$$

Setting also for $q \geqslant 2$

$$
\begin{equation*}
a_{2 q, 2}^{ \pm}=v_{2}^{ \pm}(2 q) a_{2 q, 0}^{ \pm}, \tag{A15}
\end{equation*}
$$

one obtains from equations (A7), (A8) and (A15) that

$$
\begin{equation*}
a_{2 q, 2}^{ \pm}=\left[v_{2}^{ \pm}(2 q-2)+g^{ \pm}(2 q)\right] a_{2 q, 0}^{ \pm} . \tag{A16}
\end{equation*}
$$

From equations (A15) and (A16) one finds the relation

$$
\begin{equation*}
v_{2}^{ \pm}(2 q)=v_{2}^{ \pm}(2 q-2)+g^{ \pm}(2 q), \quad q \geqslant 1 \tag{A17}
\end{equation*}
$$

where $v_{2}^{ \pm}(0)=0$ and finally

$$
\begin{equation*}
v_{2}^{ \pm}(2 q)=\sum_{\mathrm{i}=1}^{q} g^{ \pm}(2 \mathrm{i})=\frac{2 q\left(1-4 m^{2}\right)}{(2 n+1 \mp 2)(2 n+1 \mp 2)^{2}[2 n+1 \pm(4 q+2)]}, \quad q \geqslant 0 \tag{A18}
\end{equation*}
$$

Setting now for $q \geqslant 1, k \geqslant 2$,

$$
\begin{equation*}
a_{2 q, 2 k}^{ \pm}=v_{2 k}^{ \pm}(2 q) a_{2 q, 0}^{ \pm}, \tag{A19}
\end{equation*}
$$

and following the same procedure as before, by using the result $v_{2 k}^{ \pm}(0)=0$ for $k \geqslant 1$, one finally obtains

$$
\begin{align*}
v_{2 k}^{ \pm}(2 q)= & \sum_{i=1}^{q}\left[g^{ \pm}(2 i) v_{2 k-2}^{ \pm}(2 i)+h^{ \pm}(2 i) \sum_{j=2}^{k} l_{2 j} v_{2 k-2 j}^{ \pm}(2 i)+p^{ \pm}(2 i+2)\right. \\
& \left.\times v_{2 k-4}^{ \pm}(2 i+2) f^{ \pm}(2 i)\right], \quad q \geqslant 1, k \geqslant 2 . \tag{A20}
\end{align*}
$$

The recurrence relation (A20) can be used for the calculation of $v_{2 k}^{ \pm}(2 q)$, and consequently of $a_{2 q, 2 k}^{ \pm}$by using the expressions for $v_{2 k-2 s}^{ \pm}(2 i), i \geqslant 1,1 \leqslant s \leqslant k$. The coefficients $l_{2 j}(2 \leqslant j \leqslant k)$ are calculated from equation (A6), by using $a_{2,2 j-4}^{ \pm}$from equation (A19) for $q=1$ (for $j \leqslant 5$ they are also found in references $[6,9,11]$).
For large values of $k, v_{2 k}^{ \pm}(2 q)$ is obtained only numerically from equation (A20). However, for small values of k, analytical closed-form expressions are obtained, valid for each n, m and q. So, for $k=2,3$ one finds after very lengthy manipulation, the expressions

$$
\begin{align*}
v_{4}^{+}(2 q)=- & \frac{\left(1-4 m^{2}\right)^{2} q}{4(2 n-1)(2 n+3)^{4}(2 n+4 q+3)}+\frac{\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right) q}{4(2 n-3)(2 n-1)^{3}(2 n+1)^{2}(q+1)} \\
& +\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right] q}{(2 n+1)^{2}(2 n+3)^{4}(2 n+5)(2 n+2 q+3)} \\
& +\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right) q}{4(2 n-3)(2 n+1)^{2}(2 n+5)^{2}(2 n+4 q+5)}, \quad q \geqslant 0, \tag{A21a}
\end{align*}
$$

$$
\begin{aligned}
& v_{4}^{-}(2 q)=-\frac{\left(1-4 m^{2}\right)^{2} q}{4(2 n-1)^{4}(2 n+3)(2 n-4 q-1)}+\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right] q}{4(2 n+1)^{2}(2 n+3)^{3}(2 n+5)(q+1)} \\
& +\frac{\left(n^{2}-m^{2}\right)\left[(n-1)^{2}-m^{2}\right] q}{(2 n-3)(2 n-1)^{4}(2 n+1)^{2}(2 n-2 q-1)} \\
& +\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right) q}{4(2 n-3)^{2}(2 n+1)^{2}(2 n+5)(2 n-4 q-3)}, \quad q \geqslant 0, \\
& v_{6}^{+}(2 q)=\frac{\left(1-4 m^{2}\right)\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)}{2(2 n-5)(2 n-3)(2 n-1)^{5}(2 n+1)^{2}(2 n+3)} \frac{q}{q+1} \\
& +\left\{\frac{\left(1-4 m^{2}\right)^{2}}{32(2 n-1)(2 n+3)^{6}}+\frac{\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)}{2(2 n-5)(2 n-3)(2 n-1)^{3}(2 n+1)^{2}(2 n+3)^{2}}\right. \\
& -\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]}{(2 n+1)^{2}(2 n+3)^{6}(2 n+5)(2 n+7)} \\
& \left.-\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right)}{48(2 n-3)(2 n+1)^{2}(2 n+3)^{2}(2 n+5)^{2}}\right\} \\
& \times \frac{\left(1-4 m^{2}\right) q}{2 n+4 q+3}+\frac{\left(1-4 m^{2}\right)\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]}{(2 n-1)(2 n+1)(2 n+3)^{6}(2 n+5)} \\
& \times\left[\frac{2}{(2 n+1)(2 n+7)}+\frac{1}{2 n-1}\right] \frac{q}{2 n+2 q+3} \\
& -\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right)^{2}}{48(2 n-1)(2 n+1)^{2}(2 n+3)^{2}(2 n+5)^{2}} \\
& \times \frac{q}{2 n+4 q+5}+\frac{\left(1-4 m^{2}\right)\left(9-4 m^{2}\right)\left(25-4 m^{2}\right)}{96(2 n-5)(2 n-1)^{2}(2 n+3)^{2}(2 n+7)^{2}} \frac{q}{2 n+4 q+7}, \\
& v_{6}^{-}(2 q)=\frac{\left(1-4 m^{2}\right)\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]}{2(2 n-1)(2 n+1)^{2}(2 n+3)^{5}(2 n+5)(2 n+7)} \frac{q}{q+1} \\
& +\left\{\frac{\left(1-4 m^{2}\right)^{2}}{32(2 n-1)^{6}(2 n+3)}+\frac{\left[(n+1)^{2}-m^{2}\right]\left[(n+2)^{2}-m^{2}\right]}{2(2 n-1)^{2}(2 n+1)^{2}(2 n+3)^{3}(2 n+5)(2 n+7)}\right. \\
& +\frac{\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)}{(2 n-5)(2 n-3)(2 n-1)^{6}(2 n+1)^{2}} \\
& \left.-\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right)}{48(2 n-3)^{2}(2 n-1)^{2}(2 n+1)^{2}(2 n+5)}\right\} \\
& \times \frac{\left(1-4 m^{2}\right) q}{2 n-4 q-1}+\frac{\left(1-4 m^{2}\right)\left[(n-1)^{2}-m^{2}\right]\left(n^{2}-m^{2}\right)}{(2 n-3)(2 n-1)^{6}(2 n+1)(2 n+3)} \\
& \times\left[\frac{2}{(2 n-5)(2 n+1)}-\frac{1}{2 n+3}\right] \frac{q}{2 n-2 q-1}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\left(9-4 m^{2}\right)\left(1-4 m^{2}\right)^{2}}{48(2 n-3)^{2}(2 n-1)^{2}(2 n+1)^{2}(2 n+3)} \\
& \times \frac{q}{2 n-4 q-3}+\frac{\left(1-4 m^{2}\right)\left(9-4 m^{2}\right)\left(25-4 m^{2}\right)}{96(2 n-5)^{2}(2 n-1)^{2}(2 n+3)^{2}(2 n+7)} \frac{q}{2 n-4 q-5} \tag{A22b}
\end{align*}
$$

Furthermore from equations (A7), (A10) and (A11) one obtains easily

$$
\begin{gather*}
a_{2 q, 0}^{+}=(-1)^{q} \frac{(2 n-1)!!(2 n+1)!!(n-m+2 q)!}{2^{q} q!(n-m)!(2 n+4 q-1)!!(2 n+2 q+1)!!}, \quad q \geqslant 0 \tag{A23a}\\
a_{2 q, 0}^{-}=\frac{(n+m)!(2 n-2 q-1)!!(2 n-4 q+1)!!}{2^{q} q!(2 n-1)!!(2 n+1)!!(n+m-2 q)!}, \quad q \geqslant 0 \tag{A23b}
\end{gather*}
$$

while from equations (A15), (A18) and (A23) one has the results

$$
\begin{gather*}
a_{2 q, 2}^{+}=(-1)^{q} \frac{2 q\left(1-4 m^{2}\right)(2 n-1)!!(2 n+1)!!(n-m+2 q)!(2 n+4 q+1)}{2^{q} q!(2 n-1)(2 n+3)^{2}(n-m)!(2 n+2 q+1)!!(2 n+4 q+3)!!}, \quad q \geqslant 0, \tag{A24a}\\
a_{2 q, 2}^{-}=\frac{2 q\left(1-4 m^{2}\right)(n+m)!(2 n-2 q-1)!!(2 n-4 q+1)!!}{2^{q} q!(2 n-1)^{2}(2 n+3)(2 n-1)!!(2 n+1)!!(n+m-2 q)!(2 n-4 q-1)}, \quad q \geqslant 0 . \tag{A24b}
\end{gather*}
$$

Finally, from equation (A19) with $k=2$ and 3 one obtains $a_{2 q, 4}^{ \pm}$and $a_{2 q, 6}^{ \pm}$, by using equations (A21) and (A22), respectively, with equations (A23).

The explicit values of the d s depend on the normalization used.
The various calculated expansion coefficients are also useful for the evaluation of the spheroidal radial functions of any kind $\mathrm{R}_{m n}^{(\sigma)}(c, \xi), \sigma=1-4$, where $[1,6]$

$$
\begin{equation*}
\mathbf{R}_{m n}^{(\sigma)}(c, \xi)=\frac{(n-m)!}{(n+m)!}\left(\frac{\xi^{2}-1}{\xi^{2}}\right)^{m / 2} \sum_{r=0,1}^{\infty} \mathrm{i}^{r+m-n} d_{r}(c) \frac{(2 m+r)!}{r!} z_{m+r}^{(\sigma)}(c \xi) \tag{A25}
\end{equation*}
$$

as well as for the evaluation of the angular spheroidal functions of the second kind $\mathbf{S}_{n n}^{(2)}(c, \eta)$, given by the expansion [6]

$$
\begin{equation*}
\mathbf{S}_{m n}^{(2)}(c, \eta)=\sum_{r=-2 m,-2 m+1}^{\infty} d_{r} \mathbf{Q}_{m+r}^{m}(\eta)+\sum_{r=2 m+2,2 m+1}^{\infty} d_{\rho \mid r} \mathbf{P}_{r-m-1}^{m}(\eta) \tag{A26}
\end{equation*}
$$

In equation (A26) Q_{s}^{m} are the associated Legendre functions of the second kind. The coefficients $d_{r}, r \geqslant 0$ are the same as the ones already calculated. The coefficients d_{r}, $-2 m \leqslant r<0$, are given also by the same formulas, with the lower (minus) sign, but with $n-m<2 q \leqslant n+m$ now, while $d_{\rho \mid r}$ ($\rho=$ positive) are given by the limit

$$
\begin{equation*}
d_{\rho \mid r}=\lim _{\rho \rightarrow 0} \frac{d-r+\rho}{\rho}, \quad r>2 m \tag{A27}
\end{equation*}
$$

which can be calculated from equation (A3) with the lower sign. In this case $-r=n-m-2 q<-2 m$, or $2 q>n+m$. So, with $r=2 m+1(2 q=n+m+1)$ and $r=2 m+2(2 q=n+m+2)$, respectively, one obtains from equations (A7), (A10) and (A11)

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{a_{2 q-\rho, 0}^{-}}{\rho}=\frac{1}{(2 m-3)(2 m-1)(n-m)(n+m+1)} a_{2 q-2,0}^{-}=a_{\rho \mid 2 q, 0}^{-} \tag{A28}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{a_{2 q-\rho, 0}^{-}}{\rho}=-\frac{1}{(2 m-1)(2 m+1)(n-m-1)(n+m+2)} a_{2 q-2,0}^{-}=a_{\rho \mid 2,0}^{-} \tag{A29}
\end{equation*}
$$

where $a_{2 q-2,0}^{-}$for $r=2 m+1,2 m+2$ is calculated from equation (A23b) $(2 q-2 \leqslant n+m$ in these cases).

Finally, from equations (A7), (A10), (A11) and (A28), (A29) one obtains the expansion coefficients $a_{\rho \mid 2(q+1), 0}^{-}=A a_{\rho \mid 2 q, 0}^{-}$where q takes the special values used in equations (A28) and (A29), $t=0,1,2, \ldots$, and

$$
\begin{align*}
& A= \\
& \left\{\begin{array}{ll}
(2 t)!\frac{(2 m-1)!!}{(2 m-1+4 t)!!} \frac{(n+m+1)!!}{(n+m+1+2 t)!!} \frac{(n-m-2-2 t)!!}{(n-m-2)!!}, & 2 q=n+m+1 \\
(2 t+1)!\frac{(2 m+1)!!}{(2 m+1+4 t)!!} \frac{(n+m+2)!!}{(n+m+2+2 t)!!} \frac{(n-m-3-2 t)!!}{(n-m-3)!!}, & 2 q=n+m+2
\end{array}\right\} \tag{A30}
\end{align*}
$$

The coefficients $a_{\rho \mid 2(q+i), 2 k}^{-}$can be found from the limits

$$
\begin{align*}
a_{\rho \mid 2(q+t), 2 k}^{-}= & \lim _{\rho \rightarrow 0}\left[a_{2(q+t)-\rho, 2 k}^{-} / \rho\right] \\
= & \lim _{\rho \rightarrow 0}\left\{v_{2 k}^{-}[2(q+t)-\rho] a_{2(q+t)-\rho, 0}^{-} / \rho\right\}=v_{2 k}^{-}[2(q+t)] a_{\rho \mid 2(q+t), 0}^{-}, \\
& k \geqslant 1, \quad t \geqslant 0 . \tag{A31}
\end{align*}
$$

Calculation of various expansion coefficients appearing in this Appendix verifies the results given in the literature [6, 9-12], thus confirming the validity of our procedure. For special values of the parameters the relations $(-1)!!=1$ and $(-2 s-1)!!=(-1)^{s} /$ $(2 s-1)$!! for $s=0,1,2, \ldots$, have been used.

The power series expansions for the oblate angular functions are obtained from the corresponding formulas for the prolate ones, simply by replacing c by $-\mathrm{i} c$ (equivalently c^{2} by $-c^{2}$), while those for the oblate radial functions are obtained from the corresponding formulas for the prolate ones, simply by replacing c by $-\mathrm{i} c$ and ξ by $\mathrm{i} \xi$ [6].

APPENDIX B

The expressions for the various D s appearing in equations (20) and (21) are the following (for the oblate spheroidal boundaries $D^{(2)}$ s change their signs and R_{2} is the minor semi-axis of the oblate spheroidal):
B.1. DIRICHLET BOUNDARY CONDITIONS

$$
\begin{gather*}
D_{n n}^{0}=u_{n n}\left(x_{2}, x_{1}\right) \tag{B1}\\
D_{n n}^{(2)}=\frac{x_{2}^{2}}{2(2 n+1)}\left[\frac{(n+m+1)(n+m+2)}{(2 n+3)^{2}} u_{n+2, n}\left(x_{2}, x_{1}\right)\right. \\
\left.-\frac{(n-m-1)(n-m)}{(2 n-1)^{2}} u_{n-2, n}\left(x_{2}, x_{1}\right)\right] \tag{B2}
\end{gather*}
$$

$$
\begin{align*}
& D_{n n}^{(4)}= x_{2}^{4} \frac{(n+m+1)(n+m+2)}{(2 n+1)(2 n+3)^{2}(2 n+7)}\left[\frac{1-4 m^{2}}{(2 n-1)(2 n+3)^{2}} u_{n+2, n}\left(x_{2}, x_{1}\right)\right. \\
&\left.+\frac{(n+m+3)(n+m+4)}{8(2 n+5)^{2}} u_{n+4, n}\left(x_{2}, x_{1}\right)\right]-x_{2}^{4} \frac{(n-m-1)(n-m)}{(2 n-5)(2 n-1)^{2}(2 n+1)} \\
& \times\left[\frac{1-4 m^{2}}{(2 n-1)^{2}(2 n+3)} u_{n-2, n}\left(x_{2}, x_{1}\right)-\frac{(n-m-3)(n-m-2)}{8(2 n-3)^{2}} u_{n-4, n}\left(x_{2}, x_{1}\right)\right], \\
& D_{n+2, n}^{(2)}=x_{2}^{2} \frac{(n+m+1)(n+m+2)}{2(2 n+3)^{2}(2 n+5)} u_{n+2, n}\left(x_{2}, x_{1}\right) \tag{B3}\\
& D_{n, n+2}^{(2)}=-x_{2}^{2} \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)^{2}} u_{n, n+2}\left(x_{2}, x_{1}\right) \tag{B4}
\end{align*}
$$

where

$$
\begin{equation*}
u_{v s}\left(x_{2}, x_{1}\right)=\mathrm{j}_{v}\left(x_{2}\right)-\mathrm{n}_{v}\left(x_{2}\right) \mathrm{j}_{s}\left(x_{1}\right) / \mathrm{n}_{s}\left(x_{1}\right) \tag{B5}
\end{equation*}
$$

B.2. NEUMANN BOUNDARY CONDITIONS

$$
\begin{align*}
& D_{n n}^{0}=x_{2} p_{n n}\left(x_{2}, x_{1}\right), \tag{B6}\\
& D_{n n}^{(2)}=-x_{2} p_{n n}\left(x_{2}, x_{1}\right)+m q_{n n}\left(x_{2}, x_{1}\right)+x_{2}^{3} \frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}} p_{n+2, n}\left(x_{2}, x_{1}\right) \\
&-x_{2}^{3} \frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)} p_{n-2, n}\left(x_{2}, x_{1}\right) \tag{B7}\\
& D_{n n}^{(4)}= x_{2}^{2} \frac{(n+m+1)(n+m+2)}{2(2 n+1)(2 n+3)^{2}}\left\{-x_{2} p_{n+2, n}\left(x_{2}, x_{1}\right)+m q_{n+2, n}\left(x_{2}, x_{1}\right)\right. \\
&+\frac{2 x_{2}^{3}}{2 n+7}\left[\frac{1-4 m^{2}}{(2 n-1)(2 n+3)^{2}} p_{n+2, n}\left(x_{2}, x_{1}\right)\right. \\
&\left.\left.+\frac{(n+m+3)(n+m+4)}{8(2 n+5)^{2}} p_{n+4, n}\left(x_{2}, x_{1}\right)\right]\right\} \\
&-x_{2}^{2} \frac{(n-m-1)(n-m)}{2(2 n-1)^{2}(2 n+1)}\left\{-x_{2} p_{n-2, n}\left(x_{2}, x_{1}\right)+m q_{n-2, n}\left(x_{2}, x_{1}\right)+\frac{2 x_{2}^{3}}{2 n-5}\right. \\
&\left.\times\left[\frac{1-4 m^{2}}{(2 n-1)^{2}(2 n+3)} p_{n-2, n}\left(x_{2}, x_{1}\right)-\frac{(n-m-3)(n-m-2)}{8(2 n-3)^{2}} p_{n-4, n}\left(x_{2}, x_{1}\right)\right]\right\}
\end{align*}
$$

$$
\begin{equation*}
D_{n+2, n}^{(2)}=x_{2}^{3} \frac{(n+m+1)(n+m+2)}{2(2 n+3)^{2}(2 n+5)} p_{n+2, n}\left(x_{2}, x_{1}\right) \tag{B8}
\end{equation*}
$$

$$
\begin{equation*}
D_{n, n+2}^{(2)}=-x_{2}^{3} \frac{(n-m+1)(n-m+2)}{2(2 n+1)(2 n+3)^{2}} p_{n, n+2}\left(x_{2}, x_{1}\right) \tag{B9}
\end{equation*}
$$

where

$$
\begin{align*}
p_{v s}\left(x_{2}, x_{1}\right) & =\mathrm{j}_{v}^{\prime}\left(x_{2}\right)-\mathrm{n}_{v}^{\prime}\left(x_{2}\right) \mathrm{j}_{s}^{\prime}\left(x_{1}\right) / \mathrm{n}_{s}^{\prime}\left(x_{1}\right), \\
q_{v s}\left(x_{2}, x_{1}\right) & =\mathrm{j}_{v}\left(x_{2}\right)-\mathrm{n}_{v}\left(x_{2}\right) \mathrm{j}_{s}^{\prime}\left(x_{1}\right) / \mathrm{n}_{s}^{\prime}\left(x_{1}\right) . \tag{B10}
\end{align*}
$$

